会员登陆
您当前的位置: 首页 > 冲刺高考 > 文章列表; 正文
高考数学综合试题解题方法
【来源:广州家教网】【发表时间:2009/4/13

提高解数学综合性试题的能力是提高高考数学成绩的根本保证。解好综合题对于那些想考一流大学,并对数学成绩期望值较高的同学来说,是一道生命线,往往“成也萧何败也萧何”;对于那些定位在二流大学的学生而言,这里可是放手一搏的好地方。

  1.解综合性试题的三字诀:

  “三性”:综合题从题设到结论,从题型到内容,条件隐蔽,变化多样,因此就决定了审题思考的复杂性和解题设计的多样性。在审题思考中,要把握好“三性”,即:

  (1)目的性:明确解题结果的终极目标和每一步骤分项目标。

  (2)准确性:提高概念把握的准确性和运算的准确性。

  (3)隐含性:注意题设条件的隐含性。审题这第一步,不要怕慢,其实慢中有快,解题方向明确,解题手段合理,这是提高解题速度和准确性的前提和保证。

  “三化”:

  (1)问题具体化(包括抽象函数用具有相同性质的具体函数作为代表来研究,字母用常数来代表)。即把题目中所涉及的各种概念或概念之间的关系具体明确,有时可画表格或图形,以便于把一般原理、一般规律应用到具体的解题过程中去。

  (2)问题简单化。即把综合试题分解为与各相关知识相联系的简单问题,把复杂的形式转化为简单的形式。

  (3)问题和谐化。即强调变换问题的条件或结论,使其表现形式符合数或形内部固有的和谐统一的特点,或者突出所涉及的各种数学对象之间的知识联系。

  “三转”:

  (1)语言转换能力。每个数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成。解综合题往往需要较强的语言转换能力。还需要有把普通语言转换成数学语言的能力。

  (2)概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。

  (3)数形转换能力。解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数与几何的结合上找出解题思路。运用数形转换策略要注意特殊性,否则解题会出现漏洞。

  “三思”:

  (1)思路:由于综合题知识容量大,解题方法多,因此,审题时应考虑多种解题思路。

  (2)思想:高考综合题的设置往往会重点考查数学思想方法,解题时应注意数学思想方法的运用。

  (3)思辨:即在解综合题时注意思路的选择和运算方法的选择。

  “三联”:

  (1)联系相关知识。(2)连接相似问题。(3)联想类似方法。

  2.对平时综合练习的反思:

  平时做完综合练习后,要注重反思这一环节,注意方法的优化。要把解题的过程抽象形成思维模块,注意方法的迁移和问题的拓展。在最后的自由复习阶段也可选取部分做过的综合卷中的“压轴题”进行反思,主要研究:审题分析的过程(如:寻求条件与结论的联系,与基础知识的联系,与平时基本方法的联系)、隐含条件的运用、计算方法及准确性。